Joblib Apache Spark Backend
一、介绍
这个库为joblib
提供了 ApacheSpark
后端,以便在Spark
集群上分发任务。
Joblib是一个可以简单地将Python代码转换为并行计算模式的软件包,它可非常简单并行我们的程序,从而提高计算速度。
Joblib是一组用于在Python中提供轻量级流水线的工具。 它具有以下功能:
- 透明的磁盘缓存功能和“懒惰”执行模式,简单的并行计算
- Joblib对
numpy
大型数组进行了特定的优化,简单,快速。
`Scikit-learn
使用joblib库在其估计器中支持并行计算。有关控制并行计算的开关,请参阅joblib文档。
二、安装
joblibspark
requires Python 3.6+, joblib>=0.14
and pyspark>=2.4
to run. To install joblibspark
, run:
pip install joblibspark
The installation does not install PySpark because for most users, PySpark is already installed. If you do not have PySpark installed, you can install pyspark
together with joblibspark
:
pip install pyspark>=3.0.0 joblibspark
If you want to use joblibspark
with scikit-learn
, please install scikit-learn>=0.21
.
pip install scikit-learn
三、示例
from sklearn.utils import parallel_backend
from sklearn.model_selection import cross_val_score
from sklearn import datasets
from sklearn import svm
from joblibspark import register_spark
register_spark() # register spark backend
iris = datasets.load_iris()
clf = svm.SVC(kernel='linear', C=1)
with parallel_backend('spark', n_jobs=3):
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
print(scores)
执行命令,将程序提交到集群
spark-submit --master spark://master:7077 /opt/share/sklearn-svm.py
运行效果
四、局限性
joblibspark
does not generally support run model inference and feature engineering in parallel. For example:
from sklearn.feature_extraction import FeatureHasher
h = FeatureHasher(n_features=10)
with parallel_backend('spark', n_jobs=3):
# This won't run parallelly on spark, it will still run locally.
h.transform(...)
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)
with parallel_backend('spark', n_jobs=3):
# This won't run parallelly on spark, it will still run locally.
regr.predict(diabetes_X_test)
Note: for sklearn.ensemble.RandomForestClassifier
, there is a n_jobs
parameter, that means the algorithm support model training/inference in parallel, but in its inference implementation, it bind the backend to built-in backends, so the spark backend not work for this case.